Improper Integrals and Histograms

Concepts

1. An **improper integral** is an integral where one or two of the bounds of integration are $\pm\infty$. If both bounds are $\pm\infty$, we first need to split up the integral at some finite point (usually we pick 0 for convenience). Then to compute a one-sided improper integrals, we first write it as a limit as $n \to \infty$ then compute the limit. If any improper integral is ∞ , we say the integral does not exist (even in the case of two sided integrals we get $\infty - \infty$).

For a histogram, the area of the rectangle represents the probability of lying inside that region. So, if there is a 10% chance of X being between 10 and 15, the height of the rectangle would be 0.1/(15-10) = 0.02.

Example

- 2. Calculate $\int_{-\infty}^{\infty} e^{-|x|} dx$.
- 3. Suppose exam scores are given by the following data. Construct a histogram of the data with intervals $[40, 50), [50, 60), \ldots, [90 100)$.

Score	40-49	50-59	60-69	70-79	80-89	90-99
Frequency	3	2	8	4	2	1

Problems

- 4. True False When calculating $\int_{-\infty}^{\infty} f(x)dx$, the final result depends on the *a* we choose to split it up as $\int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx$.
- 5. True False Since the function f(x) = x is odd, we know that $\int_{-n}^{n} f(x)dx = 0$ for all integers n.
- 6. True False Since the function f(x) = x is odd, we know that $\int_{-\infty}^{\infty} f(x)dx = 0$ for all integers n.

- 7. Compute $\int_{-\infty}^{\infty} 2x e^{-x^2} dx$.
- 8. Draw a new histogram using the previous data except with intervals [40, 60), [60, 80), [80, 100).

Continuous Probability

Concepts

9. When we deal with random variables that can take a continuum of values, we have to use PDFs as opposed to PMFs. In this case, the value of the PMF does not give you a probability of picking that value, but instead gives you a relative likelihood. So if f(x) = 2f(y), where f is the PDF, you expect to get a value near x around twice as likely as you are to get a value near y. Another difference from PMFs is now to calculate probabilities, we must take the integral along the interval we are asking about. So $P(a \le X \le b) = \int_a^b f(x) dx$. The most important property of a PDF is $\boxed{\int_{-\infty}^{\infty} f(x) dx = 1}$. A CDF is a function F(x) where $F(x) = P(X \le x)$, it tells us that probability of getting a value less than or equal to x. It is just defined as $F(x) = \int_{-\infty}^{x} f(x) dx$. It satisfies

three important properties:

- F(x) is nondecreasing. So if $x \leq y$, then $F(x) \leq F(y)$.
- $\lim_{x \to -\infty} F(x) = 0.$
- $\lim_{x \to \infty} F(x) = 1.$

Example

- 10. Suppose that the probability density function P that an atom emits a gamma wave with the PDF $P(t) = Ce^{-10t}$ for $t \ge 0$ and P(t) = 0 for t < 0. Find P and calculate the CDF associated with P.
- 11. For the above PDF, find the probability that a gamma wave is emitted from -1 seconds to 1 second.

Problems

- 12. True False Since the CDF is an antiderivative of the PDF, there are multiple CDFs for a given PDF (and they differ by a +C).
 12. True False The area undermath a CDF must be equal to 1.
- 13. True False The area underneath a CDF must be equal to 1.
- 14. True False A PDF must be continuous.

- 15. True False Let $P(x) = Cx^3$ for $-1 \le x \le 2$ and 0 otherwise. Since $\int_{-1}^{3} P(x)dx = C(16 1/4)$, setting $C = (16 1/4)^{-1}$ makes P into a PDF.
- 16. Let $P(x) = Cx^2(10 x)$ on $0 \le x \le 10$ and 0 otherwise. Find C such that P is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1.
- 17. Let P(x) = C(x-1)(x+1) on $-1 \le x \le 1$ and 0 otherwise. Find C such that P is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1.
- 18. Let P(x) satisfy $\frac{dP}{dx} = 2x$ for $0 \le x \le 1$ and P(x) = 0 otherwise. Find P such that it is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1.
- 19. Let $F(x) = \frac{x-1}{x+1}$ for $x \ge 1$ and 0 for $x \le 1$. Show that F is a CDF. Find the PDF associated with it and the probability that we choose a number between 1 and 2.
- 20. Find numbers A, B such that $A \arctan(x) + B$ is a CDF and find the PDF associated with it. Find the probability that we choose a number between 0 and 1.
- 21. Let $F(x) = \ln x$ for $1 \le x \le a$ and F(x) = 0 for $x \le 1$ and F(x) = 1 for $x \ge a$. Find a such that F is a continuous CDF and find the PDF associated with it. Find the probability that we choose a number between 1 and 2.