Improper Integrals and Histograms

Concepts

1. An improper integral is an integral where one or two of the bounds of integration are $\pm \infty$. If both bounds are $\pm \infty$, we first need to split up the integral at some finite point (usually we pick 0 for convenience). Then to compute a one-sided improper integrals, we first write it as a limit as $n \rightarrow \infty$ then compute the limit. If any improper integral is ∞, we say the integral does not exist (even in the case of two sided integrals we get $\infty-\infty)$.
For a histogram, the area of the rectangle represents the probability of lying inside that region. So, if there is a 10% chance of X being between 10 and 15 , the height of the rectangle would be $0.1 /(15-10)=0.02$.

Example

2. Calculate $\int_{-\infty}^{\infty} e^{-|x|} d x$.
3. Suppose exam scores are given by the following data. Construct a histogram of the data with intervals $[40,50),[50,60), \ldots,[90-100)$.

Score	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$	$90-99$
Frequency	3	2	8	4	2	1

Problems

4. True False When calculating $\int_{-\infty}^{\infty} f(x) d x$, the final result depends on the a we choose to split it up as $\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x$.
5. True False Since the function $f(x)=x$ is odd, we know that $\int_{-n}^{n} f(x) d x=0$ for all integers n.
6. True False Since the function $f(x)=x$ is odd, we know that $\int_{-\infty}^{\infty} f(x) d x=0$ for all integers n.
7. Compute $\int_{-\infty}^{\infty} 2 x e^{-x^{2}} d x$.
8. Draw a new histogram using the previous data except with intervals $[40,60),[60,80),[80,100)$.

Continuous Probability

Concepts

9. When we deal with random variables that can take a continuum of values, we have to use PDFs as opposed to PMFs. In this case, the value of the PMF does not give you a probability of picking that value, but instead gives you a relative likelihood. So if $f(x)=2 f(y)$, where f is the PDF, you expect to get a value near x around twice as likely as you are to get a value near y. Another difference from PMFs is now to calculate probabilities, we must take the integral along the interval we are asking about. So $P(a \leq$ $X \leq b)=\int_{a}^{b} f(x) d x$. The most important property of a PDF is $\int_{-\infty}^{\infty} f(x) d x=1$.
A CDF is a function $F(x)$ where $F(x)=P(X \leq x)$, it tells us that probability of getting a value less than or equal to x. It is just defined as $F(x)=\int_{-\infty}^{x} f(x) d x$. It satisfies three important properties:

- $F(x)$ is nondecreasing. So if $x \leq y$, then $F(x) \leq F(y)$.
- $\lim _{x \rightarrow-\infty} F(x)=0$.
- $\lim _{x \rightarrow \infty} F(x)=1$.

Example

10. Suppose that the probability density function P that an atom emits a gamma wave with the PDF $P(t)=C e^{-10 t}$ for $t \geq 0$ and $P(t)=0$ for $t<0$. Find P and calculate the CDF associated with P.
11. For the above PDF, find the probability that a gamma wave is emitted from -1 seconds to 1 second.

Problems

12. True False Since the CDF is an antiderivative of the PDF, there are multiple CDFs for a given PDF (and they differ by a $+C$).
13. True False The area underneath a CDF must be equal to 1 .
14. True False A PDF must be continuous.
15. True False Let $P(x)=C x^{3}$ for $-1 \leq x \leq 2$ and 0 otherwise. Since $\int_{-1}^{3} P(x) d x=$ $C(16-1 / 4)$, setting $C=(16-1 / 4)^{-1}$ makes P into a PDF.
16. Let $P(x)=C x^{2}(10-x)$ on $0 \leq x \leq 10$ and 0 otherwise. Find C such that P is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1.
17. Let $P(x)=C(x-1)(x+1)$ on $-1 \leq x \leq 1$ and 0 otherwise. Find C such that P is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1.
18. Let $P(x)$ satisfy $\frac{d P}{d x}=2 x$ for $0 \leq x \leq 1$ and $P(x)=0$ otherwise. Find P such that it is a PDF and its corresponding CDF. Find the probability that we choose a number between 0 and 1 .
19. Let $F(x)=\frac{x-1}{x+1}$ for $x \geq 1$ and 0 for $x \leq 1$. Show that F is a CDF. Find the PDF associated with it and the probability that we choose a number between 1 and 2 .
20. Find numbers A, B such that $A \arctan (x)+B$ is a CDF and find the PDF associated with it. Find the probability that we choose a number between 0 and 1.
21. Let $F(x)=\ln x$ for $1 \leq x \leq a$ and $F(x)=0$ for $x \leq 1$ and $F(x)=1$ for $x \geq a$. Find a such that F is a continuous CDF and find the PDF associated with it. Find the probability that we choose a number between 1 and 2 .
